Hydraulic Conductivity Estimation Test Impact on Long-Term Acceptance Rate and Soil Absorption System Design

نویسندگان

  • Jakub Nieć
  • Marcin Spychała
چکیده

The aim of this paper was to verify the common methods of hydraulic conductivity estimation for soil assessment in respect to wastewater disposal. The studies were conducted on three types of sandy soils. Hydraulic conductivity was determined using a scale effect-free laboratory method, empirical equations and compared with measurements estimated from a laboratory infiltration column with identified head loss. Based on the hydraulic conductivity values, the long-term acceptance rates (LTAR) [1] were calculated. The differences in LTAR values were about one order of magnitude smaller than differences in hydraulic coefficient. The study showed a good convergention of the results obtained from the constant head method (CHM) by solving the Glover Equation for medium and coarse sands. In low permeability soil (fine sand), the best result was obtained using CHM-a with a capillary rise consideration (a is a factor included in the flow in the unsaturated and saturated zones calculated from a capillary rise). From a practical point of view the relatively small value of LTAR underestimation (20%-for constant head method) is responsible for the extended surface area of the system and provides a security margin (the avoidance of clogging risk). The use of the falling head method, based on the Van Hoorn equation, can be said to be highly overestimated. For medium and coarse sandy soils the underestimation of LTAR calculated and based on CHM test determination is 14%–18%. The total cost of soil absorption system (SAS) designed-based on CHM in comparison to that designed-based on real hydraulic conductivity value in Poland is only about 7%–9% higher. OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Distillery Effluent and Salts on Hydraulic Conductivity of a Sandy Loam Soil

Irrigation with distillery effluent, besides influencing crop yield, may have considerable impact on physical properties of soil because of its high salt and organic carbon contents. This experimental study was conducted to evaluate the effect of distillery effluent on hydraulic conductivity of a sandy loam alluvial soil and compare the effect of inorganic salts of potassium (K) with that of di...

متن کامل

SBR ) Offer an Efficient Wastewater Treatment

This paper describes the scientific principles of Darcy’s law and hydraulic resistance as they relate to the in-ground dispersal of onsite wastewater effluent. A clear understanding of how water moves into the ground via dispersal trenches is needed to facilitate proper system design and effect some standardization of dispersal trench sizing and design. Hydraulic conductivity of the media, hydr...

متن کامل

Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.

Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from pr...

متن کامل

The Impact of the Age of Vines on Soil Hydraulic Conductivity in Vineyards in Eastern Spain

Soil infiltration processes manage runoff generation, which in turn affects soil erosion. There is limited information on infiltration rates. In this study, the impact of vine age on soil bulk density (BD) and hydraulic conductivity (Ks) was assessed on a loam soil tilled by chisel plough. Soil sampling was conducted in the inter row area of six vineyards, which differed by the age from plantin...

متن کامل

Simultaneous estimation of soil hydraulic and solute transport parameters from transient in®ltration experiments

Estimation of soil hydraulic and solute transport parameters is important to provide input parameters for numerical models simulating transient water ̄ow and solute transport in the vadose zone. The Levenberg±Marquardt optimization algorithm in combination with the HYDRUS-1D numerical code was used to inversely estimate unsaturated soil-hydraulic and solute transport parameters from transient m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014